Non-orthogonal tensor diagonalization
نویسندگان
چکیده
Tensor diagonalization means transforming a given tensor to an exactly or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices along selected dimensions of the tensor. It has a link to an approximate joint diagonalization (AJD) of a set of matrices. In this paper, we derive (1) a new algorithm for a symmetric AJD, which is called two-sided symmetric diagonalization of an order-three tensor, (2) a similar algorithm for a non-symmetric AJD, also called a two-sided diagonalization of an order-three tensor, and (3) an algorithm for three-sided diagonalization of order-three or order-four tensors. The latter two algorithms may serve for canonical polyadic (CP) tensor decomposition, and in certain scenarios they can outperform traditional CP decomposition methods. Finally, we propose (4) similar algorithms for tensor block diagonalization, which is related to tensor block-term decomposition. The proposed algorithm can either outperform the existing block-term decomposition algorithms, or produce good initial points for their application.
منابع مشابه
Globally convergent Jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization
In this paper, we consider a family of Jacobi-type algorithms for simultaneous orthogonal diagonalization problem of symmetric tensors. For the Jacobi-based algorithm of [SIAM J. Matrix Anal. Appl., 2(34):651–672, 2013], we prove its global convergence for simultaneous orthogonal diagonalization of symmetric matrices and 3rd-order tensors. We also propose a new Jacobi-based algorithm in the gen...
متن کاملSimple LU and QR Based Non-orthogonal Matrix Joint Diagonalization
A class of simple Jacobi-type algorithms for non-orthogonal matrix joint diagonalization based on the LU or QR factorization is introduced. By appropriate parametrization of the underlying manifolds, i.e. using triangular and orthogonal Jacobi matrices we replace a high dimensional minimization problem by a sequence of simple one dimensional minimization problems. In addition, a new scale-invar...
متن کاملA Novel Non-orthogonal Joint Diagonalization Cost Function for ICA
We present a new scale-invariant cost function for non-orthogonal joint-diagonalization of a set of symmetric matrices with application to Independent Component Analysis (ICA). We derive two gradient minimization schemes to minimize this cost function. We also consider their performance in the context of an ICA algorithm based on non-orthogonal joint diagonalization.
متن کاملRealizations of su ( 1 , 1 ) and U q ( su ( 1 , 1 ) ) and generating functions for orthogonal polynomials
Positive discrete series representations of the Lie algebra su(1, 1) and the quantum algebra U q (su(1, 1)) are considered. The diagonalization of a self-adjoint operator (the Hamiltonian) in these representations and in tensor products of such representations is determined , and the generalized eigenvectors are constructed in terms of orthogonal polynomials. Using simple realizations of su(1, ...
متن کاملThe Role of Diagonalization within a Diagonalization/monte Carlo Scheme
We discuss a method called quasi-sparse eigenvector diagonalization which finds the most important basis vectors of the low energy eigenstates of a quantum Hamiltonian. It can operate using any basis, either orthogonal or non-orthogonal, and any sparse Hamiltonian, either Hermitian, non-Hermitian, finite-dimensional, or infinite-dimensional. The method is part of a new computational approach wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 138 شماره
صفحات -
تاریخ انتشار 2017